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The diffusion of a particle set near an unstable point in a bistable potential is 
considered. The scaling theory of fluctuations proposed originally for one- 
dimensional systems driven by Gaussian white noise is extended to arbitrary 
dimensions. The merits and drawbacks of the scaling theory are discussed by 
taking a model problem in one dimension. It is shown in passing that the saddle 
point approximation enables one to get analytic expressions for various 
moments of the stochastic process. The two different methods to include 
asymptotic fluctuations--which are absent in the usual scaling solution--are 
shown to be equivalent. An alternate way of including asymptotic fluctuations is 
attempted by solving the associated Fokker-Planck equation using the Fer for- 
mula. The reason for the failure of this method is traced. After this, it is argued 
that the unified scaling theory should be applicable for treatment of colored 
noise as well, for the scaling assumption is independent of the statistical 
property of the driving noise. Explicit Monte Carlo simulation of a model one- 
dimensional system driven by exponentially correlated Gaussian noise is perfor- 
med and compared with the scaling solution to bolster this point. The 
agreement is very good. 

KEY WORDS: Diffusion; Master equation; Fokker-Planck equation; system 
size expansion; statistical linearization; generalized linearization; scaling theory; 
noise, Fer formula; saddle point approximation; Monte Carlo simulation. 

1. I N T R O D U C T I O N  

The relaxat ion to equi l ibr ium of physical systems (with a large n u m b e r  of 

degrees of freedom) far from equi l ibr ium can often be described in terms of 

a few collective variables. F luc tua t ions ,  which arise from the large n u m b e r  
of irrelevant  degrees of freedom which are neglected in this statistical treat- 
ment ,  are an inevitable par t  of the measurement  of these macroscopic  
quantit ies.  The effect of the f luctuat ions are usual ly included (1-3) by adding 
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Gaussian white noise terms to the evolution equations of these variables. 
Closed form solutions of these nonlinear Langevin equations are seldom 
possible and one resorts to approximations. 

Fluctuations in physical systems are small ~4) and that forms the basis 
for all the approximation methods for the solution of the nonlinear 
Langevin equations. Depending on the type of nonlinearity (nature of the 
potential) and the initial condition, three different scenarios of fluctuations 
are possible. Each of these has to be handled by a method devised 
specifically for that. 

The simplest case arises when the system evolves to a single, globally 
stable, steady state. Then the fluctuations in the macroscopic quantity also 
remain small for all times. The average behavior of the system can be 
studied by the deterministic laws. The effect of fluctuations can be obtained 
well by using the system size expansion, (4) the statistical linearization, (5'6~ 
and the generalized linearization schemes. (7-9/ 

The next scenario obtains when the system is near a critical point. The 
scaling up of fluctuations in the macroscopic quantity and the critical slow- 
ing down are the important features of this problem. This case has been 
handled satisfactorily by Dekker. (1~ He splits the problem into an 
irreducible part and a corrective remainder. 

In this paper, we will be concerned with the last case where a system 
in a bistable potential is suddenly set at the unstable equilibrium point. 
Fluctuations in the mcroscopic variable are small initially. There is a fluc- 
tuation enhancement in the intermediate time domain which is responsible 
for formation of macroscopic order. Asymptotically, the fluctuations 
regress to the equilbrium values around each of the stable steady states. 
There have been several more or less equivalent methods m-2~ to handle 
this situation. All these attempts, which are collectively referred to as scal- 
ing theory, have been restricted to one-dimensional systems. One of the 
objectives of the present work is to lift this limitation. We do this by 
elaborating on the method of nonlinear transformation due to de Pasquale 
and Tombesi. (~4) 

The scaling theory is successful in giving a fairly correct description of 
fluctuations in the initial and the intermdiate time regimes. The asymptotic 
fluctuations cannot be handled in the ambit of scaling theory. (9'12'19'21) 
There have been attempts by Suzuki (J2) and Dekker 119) to include the 
asymptotic fluctuations. We have demonstrated the equivalence of these 
two seemingly different mthods. We have attempted to include the 
asymptotic fluctuations by solving the Fokker-Planck equation, associated 
with the Langevin equation, using the Fer formula. (22) This solution, 
though slightly better than the scaling result for the initial and the 
intermdiate times, suffers from the same drawback at large times. The 
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reason for this failure is traced to be the noninvertibility of the nonlinear 
transformation. It is then argued that Suzuki's unified treatment ~t2) 
(equivalent to Dekker's systematic evaluation of the Master equation (19)) is 
essential for restoring the asymptotic fluctuations, even if we can obtain the 
exact probability distribution in the transformed variable. 

As mentioned in the beginning, the intrinsic fluctuations are often 
modeled as Gaussian white noise. Though this allows considerable sim- 
plification of the mathematical analysis, the real physical situation may be 
far from this--the intrinsic fluctuations will most probably have a finite 
correlation time. (23) Further, it is not always necessary that the fluctuations 
respect a Gaussian distribution. The second objective of the present paper 
is to argue that the scaling method is valid for any distribution of the driv- 
ing noise. This is based on the fact that the scaling approximation is 
independent of the statistical property of the driving noise. Monte Carlo 
simulation of a model one-dimensional system driven by exponentially 
correlated Gaussian noise shows remarkable agreement with the scaling 
result. 

The plan of the paper is as follows: The nonlinear transformation of 
the stochastic process in arbitrary dimensions and the scaling solution 
applicable for any distribution of the driving noise is presented in Section 2. 
Section 3 is devoted to a detailed study of the Gaussian white noise 
problem. Systems driven by exponentially correlated Gaussian noise is 
dealt with in Section 4. The conclusions are brought out in Section 5. 

2. T H E  N O N L I N E A R  T R A N S F O R M A T I O N  A N D  T H E  
S C A L I N G  S O L U T I O N  2 

We consider the diffusion of a particle in a bistable potential, in an N- 
dimensional space (Xt,..., XN), modeled by the stochastic differential 
equations 

L- = C, (2)  + f~(t) (2. l ) 

In Eq. (2.1) the overdot refers to differentiation with respect to time t, 
Ci(JT) denote the drift terms andf i ( t )  represent the driving noise terms. Let 
ti to be a representative point on the unstable surface on which the particle 
will be set suddenly at time t = 0 .  Then by definition of instability, 
Ci(O) = 0; F positive definite, where 

r" OCil 
o = - -  (2.2) 

2 Through out this paper, an overbar on a quantity indicates that it is a vector. Expectation 
values are indicated by the angular brackets ( ) .  
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We then outline the approximate solution of Eq. (2.1), with the initial con- 
dition Pz()?, 0) = 6()?-  ~), in the following four steps: 

Step  1. Determine the time-dependent invariants Zi=Z~(t, Y) of 
the corresponding deterministic system 

~zi~-- Ci(r) ,  Yi(O) = Zi ( 2 . 3 )  

By integrating Eq. (2.3) formally and inverting for Zi, the time-dependent 
invariants can be obtained as 

Z i = exp - t E Cj(:F) Y, 
j = l  

(2.4) 

S t e p  2. Instead of the original stochastic process .~(t) introduce a 
new stochastic process ((t) such that ~(t) reduces to the invariants Z in the 
limit of vanishing noise. Thus the ( can be defined as 

~e=exp - t  ~ Cj()7) X i (2.5) 
j = l  

It is easy to show that the ~ evolve as 

d~i- ~ a ~ i  p 
-~- - j =, ~-~jj Jj (2.6) 

Equation (2.6) is completely equivalent to Eq. (2.1). Its exact solution is as 
formidable as that of the latter. 

Step  3. Apply scaling approximation to Eq. (2.6). 

When the system evolves from an unstable point fluctuations are all 
important in the initial time regime. But, fluctuations are relatively unim- 
portant and the nonlinearity is the most dominant one in the intermediate 
time region where the fluctuation enhancement occurs. By the nonlinear 
transformation given by Eq. (2.5) we have completely respected the non- 
linearity. The initial fluctuations can correctly be incorporated by replacing 
O~i/OXj in Eq. (2.6) by its value at the unstable point. Thus the scaling 
approximation is 

ar ~ ar .=~ (2.7) 
ax, 
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where the superscript denotes that the quantity is not the exact one but its 
approximate value in the scaling sense. Using Eqs. (2.5) and (2.2) it is easy 
to show that 

8Xj ~=a = ( e x p [ - F t ] ) ~  (2.8) 

Thus the approximate solution of Eq. (2.1) can be obtained using 

N 

dr ~ ( exp [ -P t ] )~ f j  (2.9) 
dt j = l  

We stress that in arriving at Eq. (2.9) we have not assumed any particular 
statistical property o f f  The only assumption that has gone in is that the 
strength of f is small. 

Equation (2.9) being linear, we can trivially integrate them to get 
(~'r and its probability distribution function P#,~((~sr t) as 

~}'~ = a ,+  g,(t), g i ( t ) -  fo (exp[---Ftl])ijf j(tl)dtl  (2.10) 
j = l  

and 
P#,r162 t) = Prob(d + ~) (2.11) 

It is easy to get the corresponding results for the original variable X. 
Inverting Eq. (2.10) formally using the functional equation (2.5), we get 

X~fl~ = Yi(t, l~(t)), hi(t) = ai + &(t) (2.12) 

and 
Px~sc/(X (so), t )=  (6(~(sc)_ ~V(t,/~(t)))~(,) (2.13) 

Equation (2.12) means that the scaling solution is obtained from solution 
Y(t, Y(t = 0)) of the corresponding deterministic equation by replacing the 
initial value Y(t = 0) = a by ~ + ~(t). If for a moment we assume that ~(t) 
equilibrates fast, crudely speaking, the scaling method is equivalent to solv- 
ing the deterministic equations with an appropriate stochastic initial con- 
dition. Rigorously, the initial condition itself changes at every instant. 
Hence the method, in practice, is equivalent to modeling the noise as a 
series of 6 function pulses whose strength varies in time. To summarize, if 
the solution of the deterministic system is obtainable, then the scaling 
solution is known analytically. 

S t e p  4. Obtain the systematic correction/~ to be added to the scal- 
ing solution )7(% 
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Following the unified scaling theory of S u z u k i ,  (~2) w e  express the 
original stochastic process ,g as 

)~_= .~(s~) +/2(t) (2.14) 

Since the deterministic evolution subject to initial fluctuations is contained 
in j~(sc),/2(0 should remain small for all times. Hence a simple linearization 
of the evolution equation of/2 should suffice. Using Eqs. (2.1) and (2.12) in 
conjunction with Eq. (2.3) we get (to the linear order) 

N 

u ~?Cil Rj+f~-  ~ Yi.j(exp[-Ft])jkfk (2.15) 

In Eq. (2.15), Yid stands for (O/Shj) Yi(t, h). Since the asymptotic solution, 
whenever it exists, in independent of the initial state, Y~d tends to zero 
asymptotically. Hence for reasonably large times, we may neglect the last 
term in Eq. (2.15). 3 To simplify the matter further, we may replace 
(OC]OXj)lx~=x~c~ by its average value. The resulting equation for R reads 

j=~ \aXj  e=x~o,/Rj+~ (2.16) 

Let P~(/2, t) be the probability distribution of the correction terms. Assum- 
ing statistical independence of X(~) and/2, the probability distribution of X" 
in the unified scaling theory can be written as 

Px,(.~, t) : f Prc~)(u, t) P n ( ) ( -  t~, t) du (2.17) 

Examples of the Nonlinear Transformation 

It is possible to get closed form algebraic expression for the transfor- 
med variable in one dimension. Starting from the operator equation 

~=exp l - tC(X)--~]  X (2.18a) 

It is trivial to show that 
= F-~(e-~F(X)) (2.18b) 

3 For the case of linear C(X) this is not true. The F should be negative definite for the 
asymptotic solution to exist. Then, the e x p [ - F t ]  increases exactly at the same rate as the 
decease of Yij that the last term of Eq. (2.15) becomes equal to --f~. Thus we get Ri = 0, as 
they should. However, for the problem of diffusion in a bistable potential, r is positive 
definite. Hence the above approximation is justified in this context. 
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where 

? = - -  , F(X) = exp L C(u)J 
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(2.18c) 

For the specific case of C(X) = 7 X -  gX 2~ + ~, which will be used later, 

q 1/2n 

~=Xe-~' 1 - g x 2 ~ ( 1 - e - 2 ~ ' ) J 7  (2.19) 

It is not possible to derive such general formulas for arbitrary dimen- 
sions. Just for illustrating the transformation we consider a two-variable 
problem of relevance to laser physics 

G(x,, x2) = ~x~[1 - (-d, + ~ ) " ] ,  c~(x~, x2) = ~ & [ 1  - ( ~  + ~ ) ' ]  

(2.20a) 

For these drift terms, the transformed variables are 

41 = e-~tXl [1 - ()(~1 + X~2)n( 1 - e-2"~')] -1/2. 

42 = e-~'Xz[ 1 - (X'~t + X~2)"(1 - e-2"~')] -i/2, 
(2.20b) 

We repeat that if the deterministic system is solvable, then the transformed 
variables also can be obtained in closed form. Even if ~ cannot be explicitly 
found, still ( corresponding to any )7 may be numerically evaluated using 
Trotter's formula. (24-26) 

3. T R E A T M E N T  OF G A U S S I A N  W H I T E  NOISE 

This section is devoted to a threadbare study of Gaussian white noise. 
For clarity of presentation, we restrict ourselves to a model system in one 
dimension 

k =  7 X -  gX 3 + f ( t )  (3.1a) 

and 

( f ( t ) )  =0,  ( f ( t ) f ( t ' ) )  = 2e 6 ( t -  t') (3.1b) 

Then from Eq. (2.11), the scaling solution can be obtained as 

1 - - 4  2 
P,c~c,(4, t)=[2rc(~/7)(l_e_2,,)]v2exp[(2~/7)(~--e_2,,) 1 (3.2a) 
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with 

E I 1 ~=Xe "~ 1-gx2(1-e-2")J7 ' X=~e~" l + g ~ 2 ( e 2 ~ ' - l Y  

(3.2b) 

The  m o m e n t s  of the stochastic process are ob ta ined  by a quadra tu re  

(X2,.+1)(~o) = 0 
(y/g)m 1 co ( 1)272 ~m 

(x2m)(sc)'~-(l--c-2~/t)m~/-~I oo ~ J  e O2dv (3.3a) 

where the scaling variable z is given by 

2eg 
1 : = 7  (e2~'-- 1) (3.3b) 

Mon te  Car lo  s imulat ion of Eq. (3.1) was per formed using R u n g e -  
K u t t a - G i l l  me thod  described earlier, (7'9) for the choice of pa ramete rs  

= g =  1 and e =0 .5  x 10 -6. The  second and four th  m o m e n t s  are presented 
as a function of t ime in Figs. 1 and  2, respectively. The  cor responding  scal- 

100 
. . . .  t . . . . . .  r 

10-1 

.. 162 I 

10-3 ~-- ~/ �9 Scaling theory 

/ ,~ �9 SPA I 

1 0 - s 1  , 4"1 , , I _ ~ _  ; I ~ I , ~ ~ , 

o 5 10 

T IME 
Fig. 1. The second moment (X2), as a function of time of the stochastic process J(= 
X--X3+f(t) with Px(X,O)=d(X). The f(t) is taken to be Gaussian and white with 
( f ( t ) ) = 0  and (f(t)f(t'))=lO-66(t-t'). The results obtained from the Monte Carlo 
simulation, the scaling theory, and the saddle point approximations (SPA I and SPA II) to 
that are presented. 
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Fig. 2. The normalized standard deviation ( < j ~ 4 )  __ <X2)2)l/2/e of the process X 2 for the 
problem considered in Fig. 1. 

ing results are also furnished. The comparison is seen to be very good in 
the initial and scaling regimes. 

v2 Since the integrand in Eq. (3.3) is of the form e , we though it 
worthwhile to mention that the saddle point approximation (27) to the 
integral should be good. If we express vzz ' / ( I  -+- t~2"C) as 1 - -  1/(1 + v2v) and 
then perform the saddle point approximation, we obtain 

<x2m>(s~ m f mC,(-1)"[l +nz]-~/2 (3.4) 
,=0 

On the other hand, if we perform the approximation directly on Eq. (3.3) 
we get 

(7/g) m [(1+4mz)1/2-11" 
<xZm>(sc)-(1-e-2~')  m ~ +4mz)1/2+ 1 

x ~ (l +_ 4mz)l/2_+ 1. exp -- 
[_ (1 +4m~) v2 2z 

These results are also presented in Figs. 1 and 2. Both the methods are 
good at small and large times. The second one is better in the intermediate 
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region. The first one has the advantage that it allows even closed form 
expressions for such quantities as the splitting time. (12/ 

3.1. Incorporation of Asymptot ic Fluctuations 

It has been demonstrated that the scaling solution is very good for 
times ~In(l/e). The asymptotic results are, however, not good. It is easy to 
show from Eq. (3.2) that the asymptotic distribution in X (~c) goes as 

P ~sc)(X, oo ) = 6(X 2 -- y/g) (3.6) 

That is, the probability distribution in X asymptotically degenerates into 
two 6 functions centered around the stable steady states + (7/g) ~/2. 

There have been attempts by Suzuki (22) and Dekker (19) to include the 
asymptotic fluctuations. The equivalence of these two methods will be 
demonstrated in the remaining part of this section. 

Suzuki's unified treatment of splitting X as the sum of the scaling 
solution X (~c) and correction R(t) has already been discussed in Section 2. 
Using Eq. (2.16), we get 

P~(R, t )=  exp (3.7) 
[27za~(t)] '/2 2a-~R(t ) 

where 
/ OC \ 

6-~(t) = 2 ~-~-X x= ~sc,) a~(t) + 2~ (3.8) 

Then the unified scaling solution is given by 

i 
Px(X, t)=f~oduPx~,c,(u, t) [27zaz(t)],/zex p 2a~(t) J (3.9) 

From the property of Hermite polynomials, (zT) it follows that 

iX 
<X~)ex=(-i)"(~)n/a<Hn(.(2~r~R)l/2))Px~,c, (3.10, 

For example, 

<X2>ex = <X2 >e~,c, + ~r 2 (3.11) 

which for the particular case considered gives the correct asymptotic limit 
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Dekker's systematic evaluation ~19~ is performed on the Master 
equation (corresponding to the Langevin equation) which reads as 

Px(X, t )=  - C(X)+a~-~-~ Px(X, t), Px(X, 0)=d(X) (3.13) 
~t 

This work, incidentally, is based on the integral transform method due to 
Haake. (13~ Haake defines another distribution function 

' E Q ( X , t ) - f  ~ du i_2~(e/7)]1/~ exp ( X -  u)2]~-/~/j Px(u, t) (3.14) 

This integral transform implies the following time evolution for Q: 

Q(X, 0 ) -  exp - (3.15) 
[2~(~/~)11/2 2 -~  

The interesting feature of this transformation is that the initial distribution 
itself is smeared. Dekker's trick is to perform system size expansion ~4~ on 
the Master equation (3.15). Defining 

X= Y(t)+e~/2R, ~-= C(Y), Y(t = 0 ) =  Y0 (3.16) 

the irreducible solution of the Master equation can be obtained as 

1 exp I -  - -  Q0 - [2~(~/7)] 1/2 
k_ 

with 
#2 = 2C'(Y)(~2 _ a/7) + 2a, 

Now, the relation (3.14) implies 

20"2 J/Q0' 
(3.17) 

( X " > e x = < ( 2 ) n / 2 H , , ( ~ ) I Q  (3.19) 

where H,,(X) denote Hermite polynomial of nth order. Using Eqs. (3.16), 
(3.17), and (3.19) it is easy to show that 

Px(X, t) = Pl(u, t) P2(X-  u, t) du (3.20) 
- -  0 C 3  

~2(0) = ~/~ (3.18) 
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where 

PI(X,t)= - ~  [2~(e/7)]l/2exp - ~  (3.21) 

and 

I - X2 1 P2(X, t)= 1 2(a7-~-~/~i [27.c(a2 _ e /7)  ] 1/2 e x p  (3.22) 

Equation (3.21) can be identified with the scaling solution. 4 Similarly 
Eq. (3.22) is identical to the distribution function of the corrective remain- 
der R introduced by Suzuki [see Eqs. (3.8) and (3.18)]. Thus we show the 
equivalence of both the methods. 

The point we would like to stress is the following: Suzuki's ad hoc 
method of splitting the stochastic process into two statistically independent 
processes is systematically derived by Dekker. But, Dekker's method is 
applicable only for Gaussian white noise--since the Master equation itself 
cannot be explicitly written down for arbitrary noise, the integral transform 
method cannot be generalized to such processes. On the other hand, 
Suzuki's approximation is applied on the Langevin's equation itself and 
hence its generalization is straightforward. 

3.2. Solution of Fokker-Planck Equation Using the 
Fer Formula 

In order to explore the possibility of incorporating asymptotic fluc- 
tuations in a straightforward manner, we considered solving the 
Fokker-Planck equation in a different manner. The Fokker-Planck 
equation satisfied by the probability distribution of ~ reads as 

g 
Pr t )= eL(i, t)Pc(i ,  t) (3.23) 

3t 

where 

L(~, t ) = ~ D ( r  t ) ~ D ( r  t), 
c(r 

D(r t)= (3.24) 
C(X) 

4 There is a small difference in the variance of 4. Even this difference will vanish if one uses a 
time-dependent integral transformation, instead of the time-independent one used here. 
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The formal solution of Eq. (3.23) is given by 

P~(~,t)=Texp[efoL(~,t~)dt~]P~(~,O) (3.25) 

where T stands for time ordering. The above expression can systematically 
be expanded in e using the Fer formula (22) as 

Pr t ) =  1~ exp[~"_M,(~, t)] P~(~, 0) (3.26) 
n = l  

where 

Mx = .f~ L(~, tl) dtl 
- u  

(3.27) 

~r2= ;o dt2 fo2dtl[L(~, t2) Z(r t l)-  L(~, tl) L(~, t2)] 

etc. If L(r t) is separable in ~ and t, then ~ ,  = 0 for n/> 2. The first-order 
approximation is obtained as 

P~(r t) = exp[e_/~l(~, t)] Pc(i ,  0) (3.28a) 

Since this is a systematic expansion in e alone, it is expected to be good for 
all times. It is easy to show that the unique solution of the operator -M1 is 
given by 

M~(~,t)=~E(~,t)~E(~,t), E2=f~D2(~,t~)dtl (3.28b) 

The solution of Eq. (3.28) becomes trivial if we define a new "stochastic 
process" 

09 = E(~, t) (3.29) 

in a fictitious space of ~. Defining the probability distribution of co in e as 
W(co, e) and using the fact that W(co, e) = EPr t, ~), we get 

0W(~, ~) 02W(o9, e) 
= W(co, e = 0) = 6(co) (3.30) 

8/~ •co2 ' 

The solution of Eq. (3.30) has to be done slightly carefully, owing to the 
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possibility that the range of co need not be [ -  0% oe ]. Excepting for the 
trivial case of C(X)= yX the range [ - L ,  L) will be finite, where 

L = I o  a4 (3.31) 
E(~) 

The series solution of Eq. (3.30) is 

1 ~ exp t/-nZTr%'~ nrc 
W(co, e ) = ~  = _ o ~  ~ , ~ )  cos -E co (3.32a) 

which on Poisson transformation (27) becomes 

1 ~ exp [  (c~ 
W(o), e) = (4rte) m k= ~o ~ J (3.32b) 

It can be shown that Eq. (3.32a) is the large time expansion and the other 
one is suitable for small times. In fact, retaining just one term in Eq. (3.32b) 
is good enough for times up to the scaling regime. 

We have applied this to the model problem C ( X ) = 7 X - g X  3, for 
which 

E = a,46 q- a 2 4 4 "t- a3 4 2 + a4 

g3 
a 1 = - -  [ e  4rt --  6e 2~' + 12yt + 3 + 2e -2~'] 

42; 4 

3g2 [e 2r' - 4 y t -  e 2~t] 
a2 = ~ 7 3  

3g 
a3 = 2-~-772 [27 t -  1 + e  -2r'] 

1 
a4 = ~-~ [ 1 - e  -2' ']  (3.33) 

The numerical calculations (not reported here) show that the present 
results are slightly better than the scaling results for times up to the scaling 
regime. Asymptotic results, however, are no better! We would now like to 
understand why this systematic expansion in e of the Master equation has 
failed. 

To make the argument clear we consider a one-dimensional model 
system C(X)= 7 X - g X  2n+ 1 (n is a positive integer). Then from Eq. (2.19) 
we obtain 

(x2m+ 1 > =0, <x2m) = [1 q- ( g / y ) r  2 n T t -  1)]  1/2" er162 

(3.34) 
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where Pc(i, t) is the exact probability distribution of 4. It follows (from the 
definition of expectation values) that 

{ (X 2m) ~<max [1 + (g/7)~2n(e 2n~'- 1)] 1/2'~ (3.35) 

irrespective of the probability distribution. Then we get 

(~)m/n (~)l/n 
lira (x2m)~ , =X~s t (3.36) 

where X~ t refers to the value of X 2 at the steady states. In fact the quantity 
in parenthesis in Eq. (3.34) is asymptotically equal to (,~/g)m/n for all 
except at the point ~ = 0. Thus we see that independent of the probability 
distribution of 4, (X  2m) asymptotically tend to (7/g) m/n. This in turn 
implies a 6 function distribution in X~22): 

Px(X, ~ ) =  [Xstl 6(X2- X~t) 

Thus the fluctuations cannot be asymptotically present in the transformed 
variable. The argument is applicable for all the cases where two stable 
minima exist. 

The reason for this can be seen to be the noninvertibility of the trans- 
formation. For every ~ one and only one X exists. Therefore the transfor- 
mation ~ ~ X is a one-to-one into mapping. However, the converse is not 
true. Asymptotically, only the X lying between the two stable steady states 
are in one-to-one correspondence with ~ [see Eq. (2.19)]. That is, there 
exists a region of the domain for which no image exists. This disqualifies 
the inverse transformation X--+ ~ to be a mapping/2s) 

In view of this and on account of the great computational simplicity it 
offers, we believe the scaling theory is the best one can do in the scope of 
the particular nonlinear transformation. 

4. ANALYSIS OF GAUSSIAN COLORED NOISE 

The scaling formalism for the general case has been presented in Sec- 
tion 2. In this section we intend to assess the applicability of this method to 
handle Gaussian colored noise. For this purpose we consider the following 
one-dimensional model problem. 

X= X -  X3 + f(t)  (4.1) 

( f ( t )  > --0, ( f ( t ) f ( t ' ) )  =eVexp[- l " [ t - t ' l ]  (4.2) 
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where f ( t )  is Gaussian. In the limit of F =  0% this reduces to the white 
noise problem considered earlier. Then from Eq. (2.11) the scaling solution 
is 

1 
Pr t) = ~ exp (4.3) 

where 

~/" --2t) (1 + e  -2t ~5-S-]-_ 1 [V(1 - e - - 2e-(1+ r) '],  for V # l  

2t3~ ~ [ 1 -  e -  2t - 2t e - for F = I  

(4.4) 

The various moments of the stochastic process in the scaling 
approximation read 

( x 2 m )  (sc) = 1 ~f~176 
(1--e-2t)  m -~o \1---+~2~/ e-V2dv 

= 2=r 2. -- 1 ) (4.5) 

The switching time Ts(F) is calculated as 

Ts(F) = Ts(F= oe)+ l ln(1 + 1/F) (4.6) 

Monte Carlo simulation of Eq. (4.1) was performed using a four point 
Runge-Kutta-Gill  algorithm described earlier. (v'9) The exponentially 
correlated Gaussian noise is modeled as the Ornstein-Uhlenbeck process 

J C = F [ - f + r l ( t ) ] ,  PJ(f' O) = 1 ( _ f 2 )  (2rc~F)l/2 exp ~ (4.7) 

where q(t) is Gaussian and white with the normalization 

(r/(t))  = O, ( q ( t ) t l ( t ' ) ) = 2 8 ( ~ ( t - t ' )  (4.8) 

The computations were performed with ~=0.5 x 10 -6 .  The values of F 
used in the simulation were 0% 1, 0.1, and 0.01 so as to cover very short 
and large correlation times, respectively. 2500 realizations of the process 
were found to give good statistics. The second moment ( X  2) as a function 
of time is presented in Fig. 3 for various F. Scaling results are also shown 
for comparison. Figure 4 gives similar information about the fourth 
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Fig. 3. The second moment (X  2) of the stochastic process f(=X-X3+f(t) with 
Px(X,O)=a(X). Here, the f(t) is modeled to be Gaussian with ( f ( t ) ) = 0  and 
(f(t)f(t'))=hxlO-7Fexp[-FIt--t'l]. The results obtained from the Monte Carlo 
simulation are compared with the corresponding scaling results for F =  oo, 0.1, and 0.01. The 
onset of order is delayed when the correlation time F -1 increases. 

moment. In fact, we have presented ((X4) - (X~)2) ~/2 which is much 
more sensitive to the fluctuations. The agreement is very good. We have 
also verified that the switching time Ts follows precisely the scaling relation 
(4.6). 

From the point of view of physics, the finite correlation time does not 
introduce any qualitative difference in the fluctuation behavior (at least in 
the quantities considered). Quantitatively, the onset of macroscopic order 
is delayed when the correlation time increases. 5 

Before closing this section, we could like to make a few remarks. First, 
we have not computed unequal time correlations and compared them with 
the corresponding scaling result. We believe the agreement should be good 
in that case also, when it is carried out. Second (and more important), we 
have performed the Monte Carlo simulation with Gaussian noise only. In 
view of the central limit theorem, the intrinsic fluctuations are most likely 
to be Gaussian. Hence the present formulation may be of use in analyzing 

5 If we keep eF (the strength of the colored noise) constant and vary F, then the opposite 
situation arises. This, of course, cannot lead to the white noise limit. 

822/39/3-4-7 
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Fig. 4. The normalized standard deviation ( (X  4 ) -  (X'2)2)1/2/~ of the process X 2 for the 
problem considered in Fig. 3. The magnitude of the fluctuation enhancement can be seen to be 
independent of the correlation time. 

most of the physical problems where intrinsic fluctuations are important. 
At the same time we must mention that the method should be able to 
tackle other distributions too, which may occur when the system is driven 
externally. In such situations Monte Carlo simulations with non-Gaussian 
noise are essential for the judgement. 

5. C O N C L U S I O N S  

The present investigation clearly establishes the usefulness of the scal- 
ing theory in unraveling fluctuation phenomena occurring in coupled 
physical systems driven by Gaussian colored noise. The scaling theory, 
together with the saddle point approximation, provides a simple but 
elegant means for getting closed form expressions for the various moments 
of the stochastic process. The nonlinear transformation used in arriving at 
the scaling result is noninvertible and hence the unified treatment is essen- 
tial for preserving asymptotic fluctuations. 

The scaling approximation does not subsume any particular statistical 
property of the driving noise. Hence the present mathematical formalism 
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should be applicable for treating any general colored noise. Such a 
situation may arise when the system is externally driven. 

Before concluding, it is tempting to speculate that a similar analysis 
should be possible for handling stochastic nonlinear fields, as well. 
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